
R fi bl C tiReconfigurable Computing

Prof. Dr. Christophe Bobdap
University of Potsdam

Institute for Computer Science
Ch i f C t E i i

‹Nr.› C. Bobda, C.R.K. Prasad©

Chair for Computer Engineering

Chapter 2
D i d I t tiDesign and Integration

2© Christophe Bobda

Agenda

1. In System Integration
2 Design Flo2. Design Flow

3© Christophe Bobda

In System Integrationy g

4© Christophe Bobda

1. Rapid Prototyping

● Reconfigurable devices (RD) are
● usually used in three different ways:● usually used in three different ways:

1. Rapid Prototyping: The RD is used as
emulator for a circuit to be producedemulator for a circuit to be produced
later as ASIC. The emulation process
allows for testing the correctness of the
i it ti d l ti APTIX S t E lcircuit, sometimes under real operating

conditions before production.
APTIX System Explorer

The APTIX-System Explorer and the
ITALTEL Flexbench systems are two
examples of emulation platforms.examples of emulation platforms.

ITALTEL FLEXBENCH

5© Christophe Bobda

ITALTEL FLEXBENCH

1. Non Frequent reconfiguration

2. Non-frequently reconfigurable
systems: The RD is used assystems: The RD is used as
application specific device similar to
ASIC. However the possibility of
upgrading the system by means ofupgrading the system by means of
reconfiguration is given.

Such systems are used as

The Nallatech BenADIC

Such systems are used as
prototyping platform, but can be
used as running environment as
well.well.

Examples are:
The RABBIT System, the celoxicaThe RABBIT System, the celoxica
RC100, RC200, RC300, the
Nallatech BenADIC. The Celoxica RC200

6© Christophe Bobda

1. Frequent reconfiguration

3. Frequently reconfigurable systems:
Usually coupled with a processor, the y p p ,
RD is used as an accelerator for time-
critical parts of applications.
The processor accesses the RD using The Celoxica RC1000p g
function calls.
The reconfigurable part is usually a PCI-
board attached to the PCI-bus.
The communication is useful for
configuration and data exchange.

The Raptor 2000

Examples are the Raptor 2000, the
celoxica RC1000 and RC2000, the
Nallatech Ballynuey

p

Nallatech Ballynuey.

More and more stand-alone frequently
fi bl t i The Nallatech Ballynuey

7© Christophe Bobda

reconfigurable systems are appearing. The Nallatech Ballynuey

1. Static and dynamic Reconfiguration

● The three ways of using a reconfigurable systems can be classified in
two

● big categories:

1 Static reconfigurable systems1. Static reconfigurable systems.
The computation and reconfiguration is defined once at compile
time.
Thi t t th id t t i t thThis category encounters the rapid prototyping systems, the non-
frequently reconfigurable systems as well as some frequently
reconfigurable systems.

2. Dynamic or run-time reconfigurable systems.
The computation and reconfiguration sequences are not known at
compile-time. The system reacts dynamically at run-time to computation
and therefore, to reconfiguration requests. Some non-frequently
reconfigurable systems as well as most frequently reconfigurable systems
belong to this category

8© Christophe Bobda

belong to this category.

1. Computation flow

● The computation in a reconfigurable
● system is usually done according to they y g
● figure aside. The processor controls the
● complete system.

1) It first downloads data to be computed by the
RD memory to the RD memory.

2) Then the RD is configured to perform a given
function over a period of time.p

3) The start signal is given to the RD to start
computation. At this time, the processor also p , p
computes its data segment in parallel to the
RD.

9© Christophe Bobda

1. Computation flow

4) Upon completion, the RD acknowledges
the processor.

5) The processor collects the computed
data from the RD memory.

o If many reconfigurations have to be
done, then some of the steps from 1) to
5) h ld b it t d di t th5) should be reiterated according to the
application's need.

A barrier synchronisation mechanism iso A barrier synchronisation mechanism is
usually used between the processor and
the RD.

o Blocking access should also be used for
the memory access between the two
d i

10© Christophe Bobda

devices.

1. Computation flow

o Devices like the Xilinx Virtex II/II-Pro
and the Altera Excalibur feature one or
more soft or hard-macro processors.

• the complete system can be
integrated in only one device.

o The reconfiguration process can be:

• Full: The complete device have to be
reconfigured. (Operation interruption
occurs))

• Partial: Only part of the device is
configured while the rest keeps
running.running.

11© Christophe Bobda

1. Computation flow
o Full reconfiguration devices

• function to be downloaded at run-time are
developed and store in a database

task 1

task 2

task N
developed and store in a database.

• No geometrical constraints restriction are
required for the function. Services Task Request

o Partial reconfiguration capabilities
• modules represented as rectangular

boxes are pre computed and stored in a M4M1

Module
Database

Scheduler

boxes, are pre-computed and stored in a
data base.

• With relocation, the modules are assigned
to a position on the device at run time

Placer
M2 M3

O.S.
to a position on the device at run-time

In the two cases, modules to be downloaded
at run time are digital circuit modules

T2

at run-time are digital circuit modules
o development is done according to digital circuit

design rules
T1

T
N

Reconfigurable Device

12© Christophe Bobda

Design Flowg

13© Christophe Bobda

2. Hardware/software partitioning

The implementation of a reconfigurable
system is a Hardware/software co- design

hi h d t iprocess which determines:

o The software part, that is the code-
t t b t d thsegment to be executed on the processor.

The development is done in a software
language with common tools.

• We will not pay much attention to this part.

o The hardware part, that is the part to be
executed on the RDexecuted on the RD.

• This is the target of this section.

o The interface between software and Interface
hardware. This part is not in the scope of
this course. Software

C, C++, Java
t

Hardware
VHDL, Verilog
H d lC t

14© Christophe Bobda

etc ... HandelC, etc..

2. Coarse-grained RC

The implementation of a coarse-grained RD is done with vendor
specific language and tools.

o Usually a C-like language with the corresponding behavioral or structural
compilers.

For the coarse-grained architectures presented in the previous
chapter, the languages and tools are summarised in the table below.

Manufaturer Language Tool Descriptiong g p
PACT-XPP NML (Structural) XPP-VC C -> NML ->configuration format
Quicksilver ACM Silver C InSpire SDK C -> SilverC ->configuration format
NECDRP C DRPCompiler C->configurationformatNEC DRP C DRP Compiler C > configuration format
IPFLEX DAP/DNA C/Matlab DAP/DNA FW C/Matlab -> configuration format
PicoChip C PicoChip Toolchain C -> configuration format

15© Christophe Bobda

2. FPGA Design Flow

The implementation flow of an FPGA designs is
shown on the figure aside. It is a modifiedASIC
design implementation divided in 5 steps.

The steps (design entry functional simulationThe steps (design entry, functional simulation,
place and route) are the same for almost all digital
circuits.

o Therefore, they will be presented only briefly.

FPGA synthesis differs from other synthesisFPGA-synthesis differs from other synthesis
process in the technology mapping step

o We will therefore consider some details of FPGA-
synthesis, in particular the LUT-technology mapping
which is proper to the FPGAs.

16© Christophe Bobda

2. FPGA Design Flow - Design entry

The design entry can be done with
o A schematic editor:

Selection components from a (target device) and
graphically connecting them together to build
complex modules.

• Finite State machine (FSM) can also be entered by
drawing the states and transitions either as graph or
as table.

o A Hardware Description Language (HDL)
• structural as well as behavioral description of complexstructural as well as behavioral description of complex

circuits.
• Behavioral description: useful for designs

containing loops, Bit-vectors, ADT, FSMs.containing loops, Bit vectors, ADT, FSMs.
• Structural description: emphasizes the hierarchy

in a given design.

17© Christophe Bobda

2. FPGA Design Flow – Functional Simulation

After the design entry, the functional simulation is
used to logically test the functionality of the design.

o A testbench provides the design under test with
inputs for which the reaction of the design is known.

The o tp ts of the circ it are obser ed on ao The outputs of the circuit are observed on a
waveform and compared to the expected values.

o For simulation purpose, many operations can be used p p , y p
(mod, div, etc...) in the design description.

o However only part of the code which is used for
simulation can be synthesized latersimulation can be synthesized later.

o The most used HDLs are:
• VHDL (behavioral, structural)VHDL (behavioral, structural)
• Verilog (behavioral, structural)
• Some C/C++-like languages (SystemC, HandelC,

etc)

18© Christophe Bobda

etc...)

2. FPGA Design Flow – Synthesis

The design is compiled and optimized. All non-
synthesizable data types and operations must be

l b i l t th i bl dreplace by equivalent synthesizable code.
o The design is first translate into a set of Boolean

equations which are then minimized.
o Technology mapping is used to assigned the

functional modules to library elements. The
technology mapping on FPGAs is called LUT-
technology mapping.

o The result of the technology mapping is a netlist
which provides a list of components used in the p p
circuit as well as their interconnections.

o There exist many formats to describe a netlist. The
most popular is the EDIF (Electronic Designmost popular is the EDIF (Electronic Design
Interchange Format).

o Vendor specific netlist also exists. Example: XNF
(Xilinx Netlist Format)

19© Christophe Bobda

(Xilinx Netlist Format)

2. FPGA Design Flow – Place and route
The Netlist provides only informations about
the components and their interconnections in a
given design The place and route must begiven design. The place and route must be
used to:

o Assign locations to the componentso Assign locations to the components.
o Provide communication paths to the

interconnections.

The place and route steps are optimization
problems for which some cost must be
minimizedminimized.
The most important factors are:

o The clock frequency.q y
o The signal latency.
o The routing congestion.

20© Christophe Bobda

o Etc...

2. FPGA Design Flow – Configuration bitstream

The Last step in the design process is the
generation of the configuration stream also
known as bitstream. A Bitstream describes:

o The value of each LUT, that is the set of bits
d t fi th f ti f LUTused to configure the function of a LUT.

o The interconnections configuration describes:
Th i t d t t f th LUT• The inputs and outputs of the LUTs

• The value of the multiplexers
• how the switches should be set in the

interconnection matrix

All informations regarding the functionality of LUTs,
multiplexers and switches are available after the
place and route step

21© Christophe Bobda

2. FPGA Design Flow – Example

Implements a Modulo 10-counter on a
symetrical array FPGA with a 2x2 Logic
Bl k (LB)Block (LB) .

The structure of the LBs is given in the
i id I i fpicture aside. It consists of:
o 2 2-inputs LUT.
o 2 edge triggered T-Flipflop.o 2 edge triggered T Flipflop.

Your result should minimize
o The areao The area
o The latency

22© Christophe Bobda

2. FPGA Design Flow – Example
Truth table of the modulo 10 counter The
z describe the states while the T describe
the inputs of the T-FFs

Karnaugh-minimization of the
functions T1, T2, T3, and T4the inputs of the T-FFs

23© Christophe Bobda

2. FPGA Design Flow – Example

24© Christophe Bobda

2. FPGA Design Flow – Example

25© Christophe Bobda

