SCC0201 – Introdução à Ciência da Computação II

Prof. Dr. Marcelo Manzato (mmanzato@icmc.usp.br) Sala 3-160

Objetivos

- Apresentação de conceitos avançados de programação estruturada
- Apresentação de técnicas para construção de algoritmos e para análise da complexidade de algoritmos
- Apresentação de algoritmos clássicos de ordenação e busca em memória interna
- Prática de programação

Programa resumido

- Introdução de conceitos avançados em linguagem de programação estruturada
- Análise de algoritmos: critérios de complexidade, notação assintótica
- Paradigmas de projeto de algoritmos (indução, recursividade, divisão e conquista, etc.)
- Algoritmos de ordenação e de busca
- Espalhamento (hashing)

Programa do curso

Data	Aula	Conteúdo
02/08	Aula 01	Apresentação da disciplina. Revisão de C – parte 1
04/08	Aula 02	Revisão de C – parte 2
09/08	Aula 03	Revisão de C – parte 3
11/08	Aula 04	Revisão de C – parte 4
16/08	Aula 05	Recursão – parte 1
18/08	Aula 06	Recursão – parte 2
23/08	Aula 07	Recursão – parte 3 Análise de Algoritmos – parte 1
25/08	Aula 08	Análise de Algoritmos – parte 2
30/08	Aula 09	Análise de Algoritmos – parte 3
01/09	Aula 10	Análise de Algoritmos – parte 4 Especificação do 1o. Trabalho
06 e 08/09		Semana da pátria. Não haverá aula.
13/09	Aula 11	Métodos de ordenação – parte 1
15/09	Aula 12	Métodos de ordenação – parte 2
20 e 22/09		Semana da computação. Não haverá aula.
27/09	Aula 13	Aula de exercícios
29/09	Aula 14	1a. Avaliação e entrega do 1o. Trabalho
04 e 06/10		WebMedia 2011. Não haverá aula.
11/10	Aula 15	Entrevista 1o. Proieto

Programa do curso

Data	Aula	Conteudo
13/10	Aula 16	Métodos de ordenação – parte 3
18/10	Aula 17	Métodos de ordenação - parte 4
20/10	Aula 18	Métodos de ordenação – parte 5
25/10	Aula 19	Métodos de ordenação – parte 6
27/10	Aula 20	Métodos de ordenação – parte 7
01/11	Aula 21	Métodos de busca – parte 1 Especificação do 2o. Trabalho
03/11	Aula 22	Métodos de busca – parte 2
08/11	Aula 23	Métodos de busca – parte 3
10/11	Aula 24	Métodos de busca – parte 4
15/11		Proclamação da República. Não haverá aula.
17/11	Aula 25	Paradigmas de projeto de algoritmos
22/11	Aula 26	Aula em aberto (à definir com PAE)
24/11	Aula 27	Aula de exercícios
29/11	Aula 28	2a. Avaliação e entrega do 2o. Trabalho
01/12	Aula 29	Entrevista do 2o. Projeto
06/12	Aula 30	Prova SUB

Avaliação

- 2 Provas (P1 e P2)
- 2 Trabalhos (T1 e T2)
- Mini-trabalhos práticos e listas de exercícios (Tp)
- 1 Prova SUB "do mal"
 - Nota invariavelmente substitui a menor entre P1 e P2
- A avaliação será feita da seguinte maneira:
 - Média das provas MP = (0.4*P1) + (0.6*P2)
 - Média dos trabalhos MT = (0.4*T1) + (0.5*T2) + (0.1*Tp)
 - Média final MF:
 - Se MP \geq 5 e MT \geq 5, então, MF = (0.7 * MP) + (0.3 * MT).
 - Caso contrário, MF = min(MP, MT)
 - Frequência mínima (presença) de 70%.

Recuperação

MS: Média do semestre

MR : Média da recuperação

MF : Média final

MF = MS + MR / 2.5Se MR ≥ 7,5

• Se 5 ≤ MR < 7,5 MF = 5

■ Se MR < 5 MF = max(MS, MR)

Bibliografia

KELLEY, A.; POHL, I. - A Book on C, 2a. edição, The Benjanmin/Cummings Pub. Co., Inc. 1990.

KERNIGHAM, B.W.; RITCHIE, D.M.C.- A Linguagem de Programação Padrão ANSI,

TENEMBAUM,A.M., e outros Data Structures Using C, Prentice-Hall, 1990.

KERNIGHAM,B.; RITCHIE,D. The C Programming Language, Prentice-Hall, 1988.

SEDGEWICK, R. - Algorithms in C, Addison-Wesley, 1990. SCHILDT, H. "C.Completo e Total", MakronBooks, 1997.

ZIVIANI, N. (2004). Projeto de Algoritmos com Implementações em Pascal e C. Editora Cengage Learning

MIZRAHI, V.V. (2008). Treinamento em Linguagem C. Prentice Hall.

CORMEN, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. (2002). Algoritmos: Teoria e Prática. Editora Campus.

Recursos disponíveis

- Tidia-Ae
 - http://agora.tidia-ae.usp.br/
 - Um dos principais meios de comunicação
 - Diretrizes da disciplina
 - Disponibilização de material da disciplina
- Atendimento e plantão de dúvidas
 - Não deixem para vésperas de provas e trabalhos

Atendimento

- Definição de horários
 - Dúvidas com professor
 - Dúvidas com estagiário PAE

Aula 01: Revisão de C Parte 1

Exercício

- Implemente um programa em C que calcule e imprima a área de um quadrado
 - Assuma que o tamanho do lado do quadrado é dado pelo usuário

Exercício

- Implemente um programa em C que
 - Leia um número positivo do usuário
 - Calcule e imprima a seqüência de Fibonacci até o primeiro número superior ao número lido do usuário
 - Exemplo: se o usuário informou o número 30, a seqüência a ser impressa é 0 1 1 2 3 5 8 13 21 34

Exercício

- Implemente um programa em C que calcule o ano de nascimento de uma pessoa a partir de sua idade
 - Implemente uma função que calcule o ano de nascimento

Exercício

- Implemente em C um programa que leia e armazene em um vetor as notas de uma prova de toda uma turma de alunos e, ao final, calcule e imprima a média geral
 - Implemente uma função para ler as notas e outra para calcular a média geral

Exercício

 Implemente em C uma função que troque o valor de 2 variáveis com valores lidos do usuário

Exercício

 Implemente um programa em C que leia o nome, a idade e o endereço de uma pessoa e armazene os dados em uma estrutura

Exercício

- Implemente em C uma função que troque os dados anteriores de duas pessoas
 - Exemplo:

Exercício

 Faça uma função para ler os dados de toda uma turma de alunos, armazenando-os em um vetor de estruturas