SCE 0117 -Introdução à Lógica Digital

Introdução aos circuitos lógicos (continuação)

Prof. Vanderlei Bonato

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 x_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 x_3 \\ m_6 = x_1 x_2 \overline{x}_3 \\ m_7 = x_1 x_2 x_3 \end{vmatrix} $	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Figure 2.17 Three-variable minterms and maxterms.

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Figure 2.18. A three-variable function.

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Figure 2.19. Two realizations of a function in Figure 2.18.

• Estudar os exemplos 2.3 e 2.4

(a) NAND gates

(b) NOR gates

Figure 2.20. NAND and NOR gates.

Figure 2.21. DeMorgan's theorem in terms of logic gates.

Figure 2.22. Using NAND gates to implement a sum-of-products.

Figure 2.23. Using NOR gates to implement a product-of sums.

• Estudar os exemplos 2.6 e 2.7

(a) POS implementation

(b) NOR implementation

Figure 2.24 NOR-gate realization of the function in Example 2.6.

(a) SOP implementation

(b) NAND implementation

Figure 2.25. NAND-gate realization of the function in Example 2.7.

$\int f$	x_3	x_2	x_1
0	0	0	0
1	1	0	0
1	0	1	0
$\parallel 0$	1	1	0
1	0	0	1
0	1	0	1
$\parallel 0$	0	1	1
$\parallel 1$	1	1	1

Figure 2.26. Truth table for a three-way light control.

(b) Product-of-sums realization

Figure 2.27. Implementation of the function in Figure 2.26.

Figure 2.28. Implementation of a multiplexer.

Figure 2.29. A typical CAD system.

Figure 2.30. A simple logic function.

ENTITY example1 IS PORT (x1, x2, x3 : IN BIT ; f : OUT BIT) ; END example1 ;

Figure 2.31. VHDL entity declaration for the circuit in Figure 2.30.

ARCHITECTURE LogicFunc OF example1 IS BEGIN f <= (x1 AND x2) OR (NOT x2 AND x3); END LogicFunc ;

Figure 2.32. VHDL architecture for the entity in Figure 2.31.

$\begin{array}{l} \mbox{ARCHITECTURE LogicFunc OF example1 IS} \\ \mbox{BEGIN} \\ \mbox{f} <= (x1 \mbox{ AND } x2) \mbox{ OR } (NOT \mbox{ x2 } AND \mbox{ x3}) : \\ \mbox{END LogicFunc }; \end{array}$

Figure 2.33. Complete VHDL code for the circuit in Figure 2.30.

ARCHITECTURE LogicFunc OF example2 IS BEGIN

 $\begin{array}{l} f<=~(x1~AND~x3)~OR~(NOT~x3~AND~x2)~;\\ g<=~(NOT~x3~OR~x1)~AND~(NOT~x3~OR~x4)~;\\ END~LogicFunc~; \end{array}$

Figure 2.34. VHDL code for a four-input function.

Figure 2.35. Logic circuit for the code in Figure 2.34.

Figure 2.36. The Venn diagrams for Example 2.11.

Figure P2.1. Two attempts to draw a four-variable Venn diagram.

Figure P2.2. A four-variable Venn diagram.

Figure P2.3. A timing diagram representing a logic function.

Figure P2.4. A timing diagram representing a logic function.