Mudanças entre as edições de "SMA333(monari)"

De CoteiaWiki
(Datas das Provas e testes:)
(Recuperação: 05/08. 19 horas. Sala ICMC 3-010)
Linha 75: Linha 75:
 
'''
 
'''
  
== Recuperação:  05/08. 19 horas. Sala ICMC 3-010 ==
+
== Recuperação:  13/07 ==
 
'''
 
'''
  

Edição das 02h27min de 24 de fevereiro de 2015

SMA-333 -Cálculo III

  • Prof. Sérgio H. Monari Soares; monari@icmc.usp.br; Sala: 4-120


  • Atendimento
  • Professor – Sérgio H. Monari Soares: segunda-feira, 19:00-21:00 horas, sala ICMC 4-120
  • Monitorias -

Conteúdo:

Seqüências numéricas. Séries numéricas. Critérios de convergêcia e divergência para séries de termos positivos. Séries absolutamente convergentes. Critérios de Cauchy e de Dirichlet. Seqüências de funções. Séries de funções. Séries de potências. Séries de Fourier: Equação do calor e da onda como motivação para o estudo das Séries de Fourier para funções pares e ímpares. Teorema de Fourier. Aplicações.

Bibliografia:

Livros textos:

GUIDORIZZI, H.L., Um Curso de Cálculo, vol. 4, 5 ed. Rio de Janeiro: LTC, 2002.

THOMAS, G. B. Cálculo, vol. 2, 11ed, São Paulo: Person, 2009.

APOSTOL, T. M. Calculus: Calculus : tradução espanhola, Barcelona: Reverte, 1972.

BOYCE, E.W., DIPRIMA, R.C., Equações diferenciais elementares e problemas de valores de contorno, 7 ed. Rio de Janeiro: LTC, 2002.

BUTKOV, E., Física matemática, Rio de Janeiro: Guanabara 2, 1988.

CHURCHILL, R., BROWN, J., Fourier series and boundary value problems, 4 ed. New York: McGraw-Hill, 1987.

SIMMONS, G.F., Cálculo com geometria analítica, vol. 2, Rio de Janeiro:Mc Graw-Hill, 1987.

STEWART, J., Cálculo, vol. 1, 2, 4ed, São Paulo:Pioneira, 2001.

SWOKOWSKI, E.W., Cálculo com geometria analítica, vol. 2, 2ed, Rio de Janeiro:Makron-Books, 1995.

TÁBOAS, P. Z., Cálculo em uma variável real, São Paulo: Editora Universidade de São Paulo, 2008.

TOLSTOV, G.P., Fourier Series, New York:Dover, 1976.

NUNES, W.V.L., Notas de aula, http://www.icmc.usp.br/~eugenio/calculo3/notas-sma333-wagner.pdf

Avaliação:

Haverá duas provas regulares P1 e P2 e dois testes T1 e T2. Cada teste vale 4,0 e cada prova vale 6,0.

Serão calculadas duas notas N1= (P1 + T1); N2=(P2 + T2).

A média será calculada da forma M = [2*N1 + 3*N2]/5.

Será considerado aprovado(a) aluno(a) que obtiver média M de no mínimo 5,0 e freqüência às aulas de no mínimo 70%.


Caso o aluno perca alguma prova/teste por motivo justificável, será agendada uma prova substitutiva assim que ele retornar às atividades.

Recuperação Caso o aluno não seja aprovado, mas tenha uma média final de pelo menos 3,0 e no mínimo 70% de freqüência, poderá fazer uma prova de recuperação (R). A média final MF será calculada como:

MF=5 se 5 < R < (10 - M); MF = (M + NR) / 2 se R > 10 – M; MF = M se M < 5

Datas das Provas e testes:

Primeiro teste (T1): 26/03

Primeira prova (P1): 30/04

Segundo teste (T2): 28/05

Segunda prova (P2): 02/07

Recuperação: 13/07

Listas:

Lista 1 Lista 2 Lista 3 Lista 4 Lista 5 Lista 6 Lista 7 Lista 8 Lista 9 Lista 10

Notas:

TESTES 1, 2, 3, 4; Provas 1 e 2 - FÍSICA

TESTES 1, 2, 3, 4; Provas 1 e 2 - AERONÁUTICA

Material Didático:

Além do livro do Guidorizzi, vol.4, a apostila do Prof. Wagner é uma boa fonte para estudar a disciplina http://www.icmc.usp.br/~eugenio/calculo3/notas-sma333-wagner.pdf

Uma referência bibliográfica para o estudo dos problemas do calor, onda e Laplace é o Capítulo 10 do livro: Boyce, E. C., Diprima, R. C., Equações diferenciais elementares e problemas de valores de contorno.

O livro contém ainda as respostas dos problemas do Capítulo 10 e um guia de resolução.